
MultiLex,

A Pipelined Lexical Analyzer

Timothy Bickmore
Robert E. Filman

Software Technology Center
Lockheed Martin Missiles & Space O/96-10 B254E

3251 Hanover Street
Palo Alto, California 94304

415-354-5250
415-424-2999 (FAX)

filman@stc.lockheed.com

Abstract
MultiLex is a lexer generator designed to facilitate creation of lexical

analyzers, particularly lexical analyzers for LALR(1) parsers of legacy

languages. Innovative features of MultiLex include its pipeline architec-

ture, lexical pattern-matching, manipulation of a larger space of objects

than just characters, reconfigurability for languages that include sub-

languages, and lexically-scoped dictionary mechanism. We discuss the

place of lexers in reengineering of legacy languages, the features of Mul-

tiLex, and compare it to prior work on lexers.

Keywords: Lexers, Software reengineering, legacy programming languages,
MultiLex, scanners, regular expressions, parsing

MultiLex Page 1

1

Introduction

Lockheed InVision has developed a collection of tools for software reengineering: ana-
lyzing software systems to aid human understanding, transforming systems to new en-
vironments, and recasting systems to new architectures and languages.1 The foundation
of this activity is a collection of language workbenches. A workbench has procedures for
parsing source code into an internal, object-based representation and manipulating that
representation. Key to reengineering is quickly assimilating additional languages into
our tool set, particularly legacy languages that lack modern analysis tools.

A critical element of a language workbench is the lexer. The lexer takes the source
character stream and produces a stream of tokens for the parser. Our environment uses
LALR(1) parsing (e.g., yacc2) Few languages have natural LALR(1) grammars, so the
task of looking ahead in the input falls to the lexer.

The most popular way to write lexers has been with lexer-generators such as lex. 3

Lex takes lexical patterns stated as regular expressions on characters and actions associ-
ated with those patterns. It produces a lexer that recognizes the patterns and performs
the actions. The actions generate tokens for the parser.

Legacy languages pose additional challenges for parsing and lexing, including the
need to preserve comments in the finished parse structure (while not cluttering the
grammar with explicit comment clauses), handle include files, modify parse behavior
based on the declarations in the program, both expand and preserve (perhaps lexically-
scoped) macros, record where in the input a particular token was found, deal with col-
umn-sensitive and line-oriented languages, and even change lexical rules in different
parts of a program (for example, for embedded assembly language). Similarly, the very
non-LALR(1)-ness of legacy languages can often require considerable lexer look-ahead.

This paper describes MultiLex, a lexical–analyzer designed to simplify generating
lexers for LALR(1) parsers of legacy languages. Key elements of MultiLex include:

• Lexing is performed over a space of objects, not characters. Objects have values
and attributes that can be characters or more complex types.

• Pattern matching of regular expressions over objects.

• A lexer is a pipeline of translators. Each translator reads a series of input objects
and produces a series of output objects for the next translator (or the parser). A
translator, at any given step, consumes a (possibly empty) sequence of input ob-
jects, modifies their values and attributes, and produces a (possibly empty) se-
quence of output objects.

• A given translator in the lexical pipeline can temporarily (or permanently) re-
construct the pipeline to receive an alternative input or perform alternative lex-
ing. This mechanism deals with macro expansion, include files, and embedded
sub-languages (e.g. assembler).

• The lexer includes a dictionary mechanism for scoped organization of analysis
data.

MultiLex Page 2

2

Although our version of MultiLex is implemented in Lisp, these same concepts can be
applied in other environments. We have used MultiLex to implement the lexers of sev-
eral language workbenches, including Jovial J3, CMS2–Y, and Prime Infobasic. We have
found that MultiLex substantially simplifies lexer construction and improves lexer
maintainability.

Motivation

Lexers perform several levels of analysis concurrently. They recognize and process
strings, comments, and macros and synthesize more complex tokens, such as keywords,
numbers, and identifiers. The primary motivation for developing a multi-phase lexer
was the desire to untangle these multiple levels of lexical analysis. This allows quicker
development and simpler maintenance than the monolithic algorithms of regular-
expression or hand-coded lexers.

The lexer produces tokens for consumption by the parser. These processes can
communicate by returning artificial pseudo-terminals, rather than keywords or semanti-
cally native terminals and by sharing global data structures. (In this paper, keywords
that include “@” are such pseudo-terminals.) Making the parser’s state table and current
state globally available allows the lexer to check whether a particular terminal is legal at
the current parse point.

In developing legacy language workbenches, we found our parsers placing fairly
complex contextual requirements on their lexers. This is due to both the hand-coded, “I
know where I am in the parse” style of writing legacy compilers and the difficulties of
defining semantically meaningful, straightforward LALR(1) grammars for legacy lan-
guages. Examples of such requirements, drawn from some of our workbenches, include:

• The lexer must invert the following pairs:

identifier SYS-DD ⇒ SYS-DD identifier
identifier SYS-PROC ⇒ SYS-PROC identifier
identifier SYS-PROC-REN ⇒ SYS-PROC-REN identifier

(LALR(1) grammars are sensitive to different statements that start out the same
way; it is easier to achieve LALR(1)-ness by knowing which kind of statement
one is parsing early. Having a variety of statements that all start with arbitrary
identifiers complicates this task.)

• The lexer must recognize labels (identifiers at the beginning of a statement fol-
lowed by a “.”). Labels are returned as a single distinct lexical entity. Several la-
bels in a row form an individual label. (Once again, we avoid starting statements
with arbitrary identifiers.)

• When the lexer sees “label end,” it needs to produce “label $ end.” [The label
shadows the look-ahead to the end. Turning the label into its own (albeit empty)
statement alleviates the problem.]

• When the lexer sees two or more “$”s or two or more “then”s in a row it needs
to eliminate all but the first one. When the lexer sees “$ then” it needs to elimi-

MultiLex Page 3

3

nate the “then” and then rescan the “$.” (Grammars with empty right-hand-side
rules are more difficult to make LALR(1).)

• When keyword “@character-string” is legal, the lexer must package all charac-
ters to the next right parenthesis into a string-terminal. (Sometimes literals have
context-sensitive delimiters.)

• If the keyword “@odd-numer-of-ints-ahead” is legal, the lexer is to count the
number of integers immediately ahead in the input. If the answer is odd, it re-
turns this keyword. (Look-ahead requirements may be unbounded.)

• If the keyword “@is-like-table” is legal, the lexer needs to look ahead to see if
the thing just before the next “$” is the keyword “L.” (Once again, legacy lan-
guages are often not LALR(k) for any k.)

• The tokens “<” and “>”are both relational and subscript operators. The lexer is
responsible for determining which kind each use is. (Lexer look-ahead may be
not only unbounded but also heuristic. The language is typeless and
“x < y < z >” is ambiguous, legal, and actually used.)

• End-of-line is used for statement termination. However, the grammar admits
other end-of-lines, and the compiler accepts still others. (The lexer must perform
error correction.)

• The lexer should recognize arrays and function names and insert the keyword
“@paren-id” after them. (The lexer must be sufficiently aware of the declaration
structure to know what declarations are in scope.)

• The lexer must recognize and expand macros. (Running a macro-expansion pass
over the code before parsing is inappropriate for language workbenches, as
(1) macros themselves may be lexically scoped—the expansion pass would need
to do something resembling parsing to determine the scope; and (2) the macro-
origin of information is important for reengineering.)

• Lexer must preserve comments in some structure accessible to the parse tree, but
comments cannot appear explicitly in the grammar. (Since any whitespace can
hold a comment, comments shadow the look-ahead and preclude LALR(1)
parsing.)

• The lexer is to ignore characters in the first ten columns of each card. (Lexing can
be column-sensitive.)

• The language includes embedded assembly language, with an entirely different
set of lexical conventions. The lexer must recognize the start and end of embed-
ded assembler and tokenize the assembler appropriately.

We note that these requirements place certain general demands on our lexers:

1. Recognizing patterns (i.e., regular-expressions) on the characters of the input.

2. Taking arbitrary actions (including generating tokens for the parser, ignoring
input, and adjust the lexer’s internal state) on pattern recognition.

3. Recognizing patterns at the level of tokens (for example, recognizing token se-
quences requiring rearrangement.)

4. Remembering (and appropriately forgetting) things about the identifiers in the
language.

MultiLex Page 4

4

5. Changing lexical styles (e.g., lexing assembler) and lexical input (e.g., processing
macro expansion by pretending to read the macro).

Lexer-generators like lex provide a mechanism for translating regular expressions over a
character stream into (token producing) actions, the first two of these. Flex also includes
a mode mechanism that enables the fifth. MultiLex provides regular expression patterns
to accomplish the third, and a pipeline of lexers to organize the different kinds of pat-
terns being discriminated. Finally, MultiLex provides several facilities (e.g., dictionaries,
column predicates) particularly convenient for the fourth and fifth.

On the other hand, the full generality of regular expressions provides unused
functionality—the implicit backtracking of Kleene operators. In our experience (which
echoes that of Horspool4), programming languages are lexically deterministic with re-
spect to iteration. Our first version of MultiLex had a variety of backtracking facilities
that have atrophied from disuse. We are left with only backtracking from explicit dis-
junction.

MultiLex implementation

A MultiLex lexer is a pipeline of translators. The streams between translators are buff-
ered. Each translator is a (primarily) a series of pattern-action rules. If the pattern of a
rule matches the translator’s input, the action of that rule is executed. Patterns can in-
clude both predicate (function-calling) tests and regular expressions that must match the
input. Pattern matching implicitly binds names to the parts of the pattern. Actions use
these bindings, the attributes of bound objects, and arbitrary computation to produce
output objects and set their properties. Lexers and translators also have local variables
and dictionaries that store processing information and definitions that describe sub-
pattern elements.

A lexer is defined by five elements: an initial configuration of translators, a set of
variables local to that lexer but shared by its translators (global variables), a set of diction-
aries, a list of the additional translators used by the lexer (that are not in the initial con-
figuration) and an initialization expression.

MultiLex Objects

Translators pass streams of objects. A MultiLex object is a set of pairs, matching attribute
names to values, coupled with a notion of historical inheritance. Typical attributes in-
clude:

value The "base value" of the object. This is the value used in the
pattern-matching of translator rules.

type The type of value. Pattern-matching predicates can refer to
the type of a value.

objects A sequence of the objects matched in the pattern that built this
object.

MultiLex Page 5

5

source Name of the source file or function, or the actual input string.

line The line number of this object in the source.

column The column number of this object in the source.

Users can define arbitrary additional attributes.
MultiLex value inheritance is historical because a sought attribute, if not found on

the current object, is looked for recursively on the first of that object’s objects. Typi-
cally, objects fed into the lexer pipeline have attributes such as column, source, and
line. They are retrieved from conceptually higher-level objects through historical in-
heritance.

Translators

A translator reads an object stream and writes an object stream. It can create new objects
and pass input objects unchanged, modified or not at all. For example, a translator can
tokenize a character stream by translating it into a sequence of objects that describe the
words found. Translators have local variables, local definitions and a sequence of local
rules. Each definition associates a name with either a pattern or computable predicate,
allowing that name to be used in patterns. Each rule is a pair, consisting of a pattern (or
pattern and test) and a series of actions. A rule (or subsequence of rules) may be modi-
fied with a conditional test.

In a translator, each grammar-rule–name and local variable defines a local vari-
able. When invoked for an output, the translator sequentially examines its rules until it
finds one that matches its input. If so, the rule-names used in the pattern are bound (re-
spectively) to objects that include the objects they matched. The actions of the matching
rule execute. A rule within the scope of a conditional is only tested if that conditional is
true.

Rule actions produce objects. Typically, these objects are named by translator defi-
nitions. The default values of these new objects are the sequence of the values of the ob-
jects that were consumed in matching that pattern; the objects of these new objects are a
list of the source objects. Often a lexer rule coerces the sequences of values to a concep-
tually higher element (e. g., coercing a sequence of digits to an integer.) Every successful
pattern match creates an object bound to token, corresponding to the entire match.

We chose this organization because (1) It allows identifying the parts of a pattern
match by name. This is more intuitive than the numeric approaches in systems such as
Lex and Emacs. 5 (2) It permits mixing pattern-matching with arbitrary predicate evalua-
tion, critical for legacy languages with complex conditions in their lexical analysis. (3) It
enables modes and avoids pointless pattern matching through the use of conditional
clauses.

MultiLex Page 6

6

Regular Expressions

MultiLex’s regular expression language extends a conventional regular expression lan-
guage with additional operators germane to MultiLex tokenization: column operators,
object matching, and type-based matching. In regular expressions, “@m:n” matches only
if the input is between columns m and n; “<<typename>>“ matches only an object of the
given type, and “<<typename value>>“ matches only an object of the given type with the
specified literal value.

Figure 1 shows a simple example, the translator MyTrans. This translator defines
patterns for letters, digits, and words. It has four rules. The first matches any object of
type comment, passing this object unchanged to the next translator. The second recog-
nizes strings of digits as integers, computes the integer’s numeric value, and passes a
token with this value. The third recognizes “quoted” words as symbols, when symbols
are legal and the discovered symbol passes the good-symbol? test, and the fourth, un-
quoted words as identifiers. (The produce operator takes parameters describing
how to coerce its sequence of objects to a new value and what type to assign that new
value. The example is in an “ALGOL-like” publication-language, sparing the reader the
effort of dealing with our actual Lispish notation.)

translator MyTrans
 definitions

<digit> = “[0..9]”;
<letter> = “[A..Za..z]”;
<word> = “<letter>{<letter>|<digit>}*”;

rules
“<<comment>>“ => produce (token.0);
“<digit>*” => produce (token, seq-to-integer, integer);
when legal?(symbol)

“‘<word>“ & good-symbol? (word)
=> produce (word, seq-to-symbol, symbol);

end when;
“<word>“ => produce (word, seq-to-ident, identifier);

end translator;

Figure 1: A simple MultiLex translator

Other features

Several other features of MultiLex are worth mentioning. A sequence of one or more
translators is a configuration. A translator can change the overall configuration by re-
placing itself with another configuration. This can be done either in a state-preserving
fashion (like a subroutine call) or unconditionally (like a goto). This mechanism is useful
for handling multiple languages (e.g., a high-level language with embedded assembler)
in the same input and for feeding macro expansions and include files back into the in-
put stream.

MultiLex operates on a stream of objects. The system provides functions for trans-
forming an input file or string into such a stream and for specifying the default attrib-
utes of the objects so created (e.g., line).

MultiLex Page 7

7

MultiLex includes scoped dictionaries that store key/value pairs. Typical uses of
dictionaries are for recording macro bodies and for remembering which identifiers have
particular attributes, (e.g., being types or matrices.)

MultiLex is implemented as a Common Lisp program. The system includes a
number of debugging and parser interface functions not described in this paper, and a
compiler that compiles lexers and translators to Lisp. Similar ideas could be applied to
compile to conventional imperative languages.

Limitations of this approach

Limitations of MultiLex include:

• We haven’t solved the “extra-syntactic” problem. Legacy system workbenches
must retain in the parse structures extra-syntactic information such as com-
ments, source lines and files, and macro origins of code. MultiLex has no magi-
cal answer to the integration of this information into parse tree. Including things
such as comments in parse trees produces trees with the wrong kinds of infor-
mation in the wrong places. Our approach has been to annotate certain terminals
with the extra information, for example, associating comments with identifiers
or statement terminators.

• MultiLex is slower than single-stage lexers. Running through several stages,
pattern matching with respect to an unbounded space and dynamically binding
names all require computation.

• Pipelines function asynchronously. In particular, inquiring about the parser’s
state (“Is this keyword legal here?”) is usually meaningful only for the first token
of the last translator in the pipeline.

• In a similar vein, pipelines force early decisions. Occasionally a downstream
translator must decompose elements back to their primitive constituents and re-
analyze.

Alternative Approaches

Lex3 exemplifies the dominant practice for lexical generators. Lex provides regular ex-
pressions, including sets, optional elements and Kleene operators, the slash look-ahead
operator, definitions, and rules (with greedy and priority matching). Lex is typically in-
tegrated with C code that can perform alternative actions and maintain the lexer state.
Flex6 extends lex with modal variables for its rules.

The INDIA Lexic Generator7 uses a grammar (rather than regular expressions) to
define patterns. INDIA builds an FSA and uses it to generate code to perform the pat-
tern matching. The resulting program has no procedure calls (except for symbol table
interfaces), and a few other optimizations to enhance run-time efficiency. Similarly,
Alex8 uses an extended BNF form to define the lexical generator.

GRAMOL9 integrates lexing and parsing using an extended BNF for both.
GRAMOL takes these descriptions and outputs a parser and scanner. The scanner gen-
erator builds an FSA, the system uses a greedy pattern matcher, the user can specify the
number of significant characters in a token (i.e., the first n), case conversion is a primi-

MultiLex Page 8

8

tive, keywords are always preferentially matched over more general patterns (e.g.,
identifiers), and the system employs context-sensitive ambiguity resolution (e.g., look-
ahead: <token1> when_followed_by <lexical-expression> and look-behind: <token1>
when_preceded_by <token2>.

Salomon and Cormack10 present a system that extends context-free grammars with
metalinguistic enhancements. This allows them to dispense with lexers, describing lan-
guage syntax completely at the grammatical level. The resulting system is considerably
faster than two process parsers, though they do not report if their approach can be ex-
tended to the complexities of legacy languages.

Dyadkin11 presents an idea similar to the pipelines of MultiLex in a Fortran com-
piler composed of ten pipelined LL(1) parsers. This system incorporates all the work of
each level of parsing into an LL(1) parser; our approach allows intermixing of structured
parsing and computational steps, and integrates with yacc-style LALR(1) parsers.

In Mkscan,4 Horspool and Levy dispense with linguistic representations of lexers,
providing instead a pattern-by-example graphical user-interface that compiles to a con-
ventional scanner.

Summary

MultiLex is a lexer particularly appropriate for parsing legacy languages. MultiLex has
been successfully used, by several programmers (including at least one who is not an
author of the system) for several language workbenches. Novel features of MultiLex in-
clude its pipelined architecture, its pattern-matching over a larger space of tokens than
simple characters, its ability to reconfigure for alternative modes and sub-languages,
and its dictionary mechanisms.

Acknowledgments

Our thanks to Paul Morris for comments on the drafts of this paper.

References
1. R. E. Filman, "Applying AI to software reengineering." Automated Software Engi-

neering.

2. S. C. Johnson, “Yacc—Yet another compiler compiler,” CSTR32, Bell Laboratories,
Murray Hill, New Jersey, 1975.

3. M. E. Lesk, “LEX–A lexical analyzer generator,” CSTR 39, Bell Laboratories, Murray
Hill, New Jersey, 1975

4. R. N. Horspool and M. R. Levy, “Mkscan—An interactive scanner generator,” Soft-
ware Practice and Experience, 17, 369–378, 1987.

5. R. Stallman, Emacs Manual, Free Software Foundation, Cambridge MA, 1989.

6. J. Poskanzer and V. Paxson, Flex manual, Free Software Foundation, Cambridge
MA, 1990.

MultiLex Page 9

9

7. M. Albinus and W. Abmann, “The INDIA lexic generator,” Workshop on Compiler
Compilers and High Speed Compilation, Springer Verlag, Berlin, 115–127, 1988.

8. H. Mössenböck, “Alex—A simple and efficient scanner generator,” SIGPLAN No-
tices, 21, 139–157, 1986.

9. C. Genillard and A. Strohmeier, “GRAMOL—a grammar description language for
lexical and syntactic parsers,” SIGPLAN Notices, 23, 103–115, 1988.

10. D. J. Salomon and G. V. Cormack, “Scannerless NSLR(1) parsing of programming
languages,” SIGPLAN ‘89 Conference on Programming Language Design and Im-
plementation, SIGPLAN Notices, 24, 170–178, 1989.

11.L. J. Dyadkin, “Multibox parsers,” SIGPLAN Notices, 29, 54–60, 1994.

